IEEE 2014 / 13 – Cloud Computing Project

IEEE 2014: 6th International Conference on New Technologies, Mobility and Security (NTMS),
Abstract—Recent years have witnessed the trend of leveraging cloud-based services for large scale content storage, processing, and distribution. Security and privacy are among top concerns for the public cloud environments. Towards these security challenges, we propose and implement, on Open Stack Swift, a new client-side deduplication scheme for securely storing and sharing outsourced data via the public cloud. The originality of our proposal is twofold. First, it ensures better confidentiality towards unauthorized users. That is, every client computes a per data key to encrypt the data that he intends to store in the cloud. As such, the data access is managed by the data owner. Second, by integrating access rights in metadata file, an authorized user can decipher an encrypted file only with his private key.
Attribute Based Encryption with Privacy Preserving In Clouds
IEEE 2014 TRANSACTIONS ON KNOWLEDGE & DATA ENGINEERING
Abstract— Security and privacy are very important issues in cloud computing. In existing system access control in clouds are centralized in nature. The scheme uses a symmetric key approach and does not support authentication. Symmetric key algorithm uses same key for both encryption and decryption. The authors take a centralized approach where a single key distribution center (KDC) distributes secret keys and attributes to all users. A new decentralized access control scheme for secure data storage in clouds that supports anonymous authentication. The validity of the user who stores the data is also verified. The proposed scheme is resilient to replay attacks. In this scheme using Secure Hash algorithm for authentication purpose, SHA is the one of several cryptographic hash functions, most often used to verify that a file has been unaltered. The Paillier crypto system is a probabilistic asymmetric algorithm for public key cryptography. Pailier algorithm use for Creation of access policy, file accessing and file restoring process.

Oruta: privacy-preserving public auditing for shared data in the cloud
IEEE 2014 Transactions on Cloud Computing
Abstract— With cloud data services, it is commonplace for data to be not only stored in the cloud, but also shared across multiple users. Unfortunately, the integrity of cloud data is subject to skepticism due to the existence of hardware/software failures and human errors. Several mechanisms have been designed to allow both data owners and public verifiers to efficiently audit cloud data integrity without retrieving the entire data from the cloud server. However, public auditing on the integrity of shared data with these existing mechanisms will inevitably reveal confidential information-identity privacy-to public verifiers. In this paper, we propose a novel privacy-preserving mechanism that supports public auditing on shared data stored in the cloud. In particular, we exploit ring signatures to compute verification metadata needed to audit the correctness of shared data. With our mechanism, the identity of the signer on each block in shared data is kept private from public verifiers, who are able to efficiently verify shared data integrity without retrieving the entire file. In addition, our mechanism is able to perform multiple auditing tasks simultaneously instead of verifying them one by one. Our experimental results demonstrate the effectiveness and efficiency of our mechanism when auditing shared data integrity.

Shared Authority Based Privacy-preserving Authentication Protocol in Cloud Computing
Abstract—Cloud computing is emerging as a prevalent data interactive paradigm to realize users’ data remotely stored in an online cloud server. Cloud services provide great conveniences for the users to enjoy the on-demand cloud applications without considering the local infrastructure limitations. During the data accessing, different users may be in a collaborative relationship, and thus data sharing becomes significant to achieve productive benefits. The existing security solutions mainly focus on the authentication to realize that a user’s privative data cannot be unauthorized accessed, but neglect a subtle privacy issue during a user challenging the cloud server to request other users for data sharing. The challenged access request itself may reveal the user’s privacy no matter whether or not it can obtain the data access permissions. In this paper, we propose a shared authority based privacy-preserving authentication protocol (SAPA) to address above privacy issue for cloud storage. In the SAPA, 1) shared access authority is achieved by anonymous access request matching mechanism with security and privacy considerations (e.g., authentication, data anonymity, user privacy, and forward security); 2) attribute based access control is adopted to realize that the user can only access its own data fields; 3) proxy re-encryption is applied by the cloud server to provide data sharing among the multiple users. Meanwhile, universal composability (UC) model is established to prove that the SAPA theoretically has the design correctness. It indicates that the proposed protocol realizing privacy-preserving data access authority sharing, is attractive for multi-user collaborative cloud applications.

A Novel Economic Sharing Model in a Federation of Selfish Cloud Providers
IEEE 2014 Transactions on Cloud Computing
Abstract—This paper presents a novel economic model to regulate capacity sharing in a federation of hybrid cloud providers (CPs). The proposed work models the interactions among the CPs as a repeated game among selfish players that aim at maximizing their profit by selling their unused capacity in the spot market but are uncertain of future workload fluctuations. The proposed work first establishes that the uncertainty in future revenue can act as a participation incentive to sharing in the repeated game. We, then, demonstrate how an efficient sharing strategy can be obtained via solving a simple dynamic programming problem. The obtained strategy is a simple update rule that depends only on the current workloads and a single variable summarizing past interactions. In contrast to existing approaches, the model incorporates historical and expected future revenue as part of the virtual machine (VM) sharing decision. Moreover, these decisions are not enforced neither by a centralized broker nor by predefined agreements. Rather, the proposed model employs a simple grim trigger strategy where a CP is threatened by the elimination of future VM hosting by other CPs. Simulation results demonstrate the performance of the proposed model in terms of the increased profit and the reduction in the variance in the spot market VM availability and prices.
Proactive Workload Management in Hybrid Cloud Computing
IEEE 2014 Transactions on Cloud Computing
Abstract—The hindrances to the adoption of public cloud computing services include service reliability, data security and privacy, regulation compliant requirements, and so on. To address those concerns, we propose a hybrid cloud computing model which users may adopt as a viable and cost-saving methodology to make the best use of public cloud services along with their privately-owned (legacy) data centers. As the core of this hybrid cloud computing model, an intelligent workload factoring service is designed for proactive workload management. It enables federation between on- and off-premise infrastructures for hosting Internet-based applications, and the intelligence lies in the explicit segregation of base workload and flash crowd workload, the two naturally different components composing the application workload. The core technology of the intelligent workload factoring service is a fast frequent data item detection algorithm, which enables factoring incoming requests not only on volume but also on data content, upon a changing application data popularity. Through analysis and extensive evaluation with real-trace driven simulations and experiments on a hybrid testbed consisting of local computing platform and Amazon Cloud service platform, we showed that the proactive workload management technology can enable reliable workload prediction in the base workload zone (with simple statistical methods), achieve resource efficiency (e.g., 78% higher server capacity than that in base workload zone) and reduce data cache/replication overhead (up to two orders of magnitude) in the flash crowd workload zone, and react fast (with an X2 speed-up factor) to the changing application data popularity upon the arrival of load spikes.

Cloud-Based Mobile Multimedia Recommendation System With User Behavior Information
IEEE 2014 Transactions on Cloud Computing
Abstract—Facing massive multimedia services and contents in the Internet, mobile users usually waste a lot of time to obtain their interests. Therefore, various context-aware recommendations systems have been proposed. Most of those proposed systems deploy a large number of context collectors at terminals and access networks. However, the context collecting and exchanging result in heavy network overhead, and the context processing consumes huge computation. In this paper, a cloud-based mobile multimedia recommendation system which can reduce network overhead and speed up the recommendation process is proposed. The users are classified into several groups according to their context types and values. With the accurate classification rules, the context details are not necessary to compute, and the huge network overhead is reduced. Moreover, user contexts, user relationships, and user profiles are collected from video-sharing websites to generate multimedia recommendation rules based on the Hadoop platform. When a new user request arrives, the rules will be extended and optimized to make real-time recommendation. The results show that the proposed approach can recommend desired services with high precision, high recall, and low response delay.

Privacy-Preserving Multi-Keyword Ranked Search over Encrypted Cloud Data
IEEE 2014 Transactions on Cloud Computing
Abstract—With the advent of cloud computing, data owners are motivated to outsource their complex data management systems from local sites to the commercial public cloud for great flexibility and economic savings. But for protecting data privacy, sensitive data have to be encrypted before outsourcing, which obsoletes traditional data utilization based on plaintext keyword search. Thus, enabling an encrypted cloud data search service is of paramount importance. Considering the large number of data users and documents in the cloud, it is necessary to allow multiple keywords in the search request and return documents in the order of their relevance to these keywords. Related works on searchable encryption focus on single keyword search or Boolean keyword search, and rarely sort the search results. In this paper, for the first time, we define and solve the challenging problem of privacy-preserving multi-keyword ranked search over encrypted data in cloud computing (MRSE). We establish a set of strict privacy requirements for such a secure cloud data utilization system. Among various multi-keyword semantics, we choose the efficient similarity measure of “coordinate matching,” i.e., as many matches as possible, to capture the relevance of data documents to the search query. We further use “inner product similarity” to quantitatively evaluate such similarity measure. We first propose a basic idea for the MRSE based on secure inner product computation, and then give two significantly improved MRSE schemes to achieve various stringent privacy requirements in two different threat models. To improve search experience of the data search service, we further extend these two schemes to support more search semantics. Thorough analysis investigating privacy and efficiency guarantees of proposed schemes is given. Experiments on the real-world data set further show proposed schemes indeed introduce low overhead on computation and communication.

Panda: Public Auditing for Shared Data with Efficient User Revocation in the Cloud
IEEE 2014 TRANSACTIONS ON SERVICE COMPUTING
Abstract—With data storage and sharing services in the cloud, users can easily modify and share data as a group. To ensure shared data integrity can be verified publicly, users in the group need to compute signatures on all the blocks in shared data. Different blocks in shared data are generally signed by different users due to data modifications performed by different users. For security reasons, once a user is revoked from the group, the blocks which were previously signed by this revoked user must be re-signed by an existing user. The straightforward method, which allows an existing user to download the corresponding part of shared data and re-sign it during user revocation, is inefficient due to the large size of shared data in the cloud. In this paper, we propose a novel public auditing mechanism for the integrity of shared data with efficient user revocation in mind. By utilizing the idea of proxy re-signatures, we allow the cloud to re-sign blocks on behalf of existing users during user revocation, so that existing users do not need to download and re-sign blocks by themselves. In addition, a public verifier is always able to audit the integrity of shared data without retrieving the entire data from the cloud, even if some part of shared data has been re-signed by the cloud. Moreover, our mechanism is able to support batch auditing by verifying multiple auditing tasks simultaneously. Experimental results show that our mechanism can significantly improve the efficiency of user revocation.
A Hybrid Cloud Approach for Secure Authorized Deduplication
IEEE 2014 Transactions on Cloud Computing
Abstract—Data deduplication is one of important data compression techniques for eliminating duplicate copies of repeating data, and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth. To protect the confidentiality of sensitive data while supporting deduplication, the convergent encryption technique has been proposed to encrypt the data before outsourcing. To better protect data security, this paper makes the first attempt to formally address the problem of authorized data deduplication. Different from traditional deduplication systems, the differential privileges of users are further considered in duplicate check besides the data itself. We also present several new deduplication constructions supporting authorized duplicate check in a hybrid cloud architecture. Security analysis demonstrates that our scheme is secure in terms of the definitions specified in the proposed security model. As a proof of concept, we implement a prototype of our proposed authorized duplicate check scheme and conduct testbed experiments using our prototype. We show that our proposed authorized duplicate check scheme incurs minimal overhead compared to normal operations.
IEEE 2014 Transactions on Cloud Computing
Abstract—Data deduplication is one of important data compression techniques for eliminating duplicate copies of repeating data, and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth. To protect the confidentiality of sensitive data while supporting deduplication, the convergent encryption technique has been proposed to encrypt the data before outsourcing. To better protect data security, this paper makes the first attempt to formally address the problem of authorized data deduplication. Different from traditional deduplication systems, the differential privileges of users are further considered in duplicate check besides the data itself. We also present several new deduplication constructions supporting authorized duplicate check in a hybrid cloud architecture. Security analysis demonstrates that our scheme is secure in terms of the definitions specified in the proposed security model. As a proof of concept, we implement a prototype of our proposed authorized duplicate check scheme and conduct testbed experiments using our prototype. We show that our proposed authorized duplicate check scheme incurs minimal overhead compared to normal operations.
A Review on the State-of-the-Art Privacy Preserving Approaches in the e-Health Clouds
IEEE 2014 Transactions on Cloud Computing
Abstract—Cloud computing is emerging as a new computing paradigm in the healthcare sector besides other business domains. Large numbers of health organizations have started shifting the electronic health information to the cloud environment. Introducing the cloud services in the health sector not only facilitates the exchange of electronic medical records among the hospitals and clinics, but also enables the cloud to act as a medical record storage center. Moreover, shifting to the cloud environment relieves the healthcare organizations of the tedious tasks of infrastructure management and also minimizes development and maintenance costs. Nonetheless, storing the patient health data in the third-party servers also entails serious threats to data privacy. Because of probable disclosure of medical records stored and exchanged in the cloud, the patients’ privacy concerns should essentially be considered when designing the security and privacy mechanisms. Various approaches have been used to preserve the privacy of the health information in the cloud environment. This survey aims to encompass the state-of-the-art privacy preserving approaches employed in the e-Health clouds. Moreover, the privacy preserving approaches are classified into cryptographic and non-cryptographic approaches and taxonomy of the approaches is also presented. Furthermore, the strengths and weaknesses of the presented approaches are reported and some open issues are highlighted
Dynamic Optimization of Multiattribute Resource Allocation in Self-Organizing Clouds
IEEE 2013 Transactions on Cloud Computing
Abstract—By leveraging virtual machine (VM) technology which provides performance and fault isolation, cloud resources can be provisioned on demand in a fine grained, multiplexed manner rather than in monolithic pieces. By integrating volunteer computing into cloud architectures, we envision a gigantic self-organizing cloud (SOC) being formed to reap the huge potential of untapped commodity computing power over the Internet. Toward this new architecture where each participant may autonomously act as both resource consumer and provider, we propose a fully distributed, VM-multiplexing resource allocation scheme to manage decentralized resources. Our approach not only achieves maximized resource utilization using the proportional share model (PSM), but also delivers provably and adaptively optimal execution efficiency. We also design a novel multiattribute range query protocol for locating qualified nodes. Contrary to existing solutions which often generate bulky messages per request, our protocol produces only one lightweight query message per task on the Content Addressable Network (CAN). It works effectively to find for each task its qualified resources under a randomized policy that mitigates the contention among requesters. We show the SOC with our optimized algorithms can make an improvement by 15-60 percent in system throughput than a P2P Grid model. Our solution also exhibits fairly high adaptability in a dynamic node-churning environment.
IEEE 2013 Transactions on Cloud Computing
Abstract—By leveraging virtual machine (VM) technology which provides performance and fault isolation, cloud resources can be provisioned on demand in a fine grained, multiplexed manner rather than in monolithic pieces. By integrating volunteer computing into cloud architectures, we envision a gigantic self-organizing cloud (SOC) being formed to reap the huge potential of untapped commodity computing power over the Internet. Toward this new architecture where each participant may autonomously act as both resource consumer and provider, we propose a fully distributed, VM-multiplexing resource allocation scheme to manage decentralized resources. Our approach not only achieves maximized resource utilization using the proportional share model (PSM), but also delivers provably and adaptively optimal execution efficiency. We also design a novel multiattribute range query protocol for locating qualified nodes. Contrary to existing solutions which often generate bulky messages per request, our protocol produces only one lightweight query message per task on the Content Addressable Network (CAN). It works effectively to find for each task its qualified resources under a randomized policy that mitigates the contention among requesters. We show the SOC with our optimized algorithms can make an improvement by 15-60 percent in system throughput than a P2P Grid model. Our solution also exhibits fairly high adaptability in a dynamic node-churning environment.
Decentralized Access Control with Anonymous Authentication of Data Stored in Clouds
IEEE 2014 Transactions on Cloud Computing
Abstract—We propose a new decentralized access control scheme for secure data storage in clouds, that supports anonymous authentication. In the proposed scheme, the cloud verifies the authenticity of the ser without knowing the user’s identity before storing data. Our scheme also has the added feature of access control in which only valid users are able to decrypt the stored information. The scheme prevents replay attacks and supports creation, modification, and reading data stored in the cloud. We also address user revocation. Moreover, our authentication and access control scheme is decentralized and robust, unlike other access control schemes designed for clouds which are centralized. The communication, computation, and storage overheads are comparable to centralized approaches.
IEEE 2014 Transactions on Cloud Computing
Abstract—We propose a new decentralized access control scheme for secure data storage in clouds, that supports anonymous authentication. In the proposed scheme, the cloud verifies the authenticity of the ser without knowing the user’s identity before storing data. Our scheme also has the added feature of access control in which only valid users are able to decrypt the stored information. The scheme prevents replay attacks and supports creation, modification, and reading data stored in the cloud. We also address user revocation. Moreover, our authentication and access control scheme is decentralized and robust, unlike other access control schemes designed for clouds which are centralized. The communication, computation, and storage overheads are comparable to centralized approaches.
An Efficient Information Retrieval Approach for Collaborative Cloud Computing
IEEE 2014 TRANSACTIONS ON CLOUD COMPUTING
Abstract—The collaborative cloud computing (CCC) which is collaboratively supported by various organizations (Google, IBM, AMAZON, MICROSOFT) offers a promising future for information retrieval. Human beings tend to keep things simple by moving the complex aspects to computing. As a consequence, we prefer to go to one or a limited number of sources for all our information needs. In contemporary scenario where information is replicated, modified (value added), and scattered geographically; retrieving information in a suitable form requires lot more effort from the user and thus difficult. For instance, we would like to go directly to the source of information and at the same time not to be burdened with additional effort. This is where, we can make use of learning systems (Neural Network based) that can intelligently decide and retrieve the information that we need by going directly to the source of information. This also, reduces single point of failure and eliminates bottlenecks in the path of information flow, Reduces the Time delay and it provide remarkable ability to overcome from traffic conjection complicated patterns. It makes Efficient information retrieval approach for collaborative cloud computing. both secure and verifiable, without relying on random oracles. Finally, we show an implementation of our
Abstract—The collaborative cloud computing (CCC) which is collaboratively supported by various organizations (Google, IBM, AMAZON, MICROSOFT) offers a promising future for information retrieval. Human beings tend to keep things simple by moving the complex aspects to computing. As a consequence, we prefer to go to one or a limited number of sources for all our information needs. In contemporary scenario where information is replicated, modified (value added), and scattered geographically; retrieving information in a suitable form requires lot more effort from the user and thus difficult. For instance, we would like to go directly to the source of information and at the same time not to be burdened with additional effort. This is where, we can make use of learning systems (Neural Network based) that can intelligently decide and retrieve the information that we need by going directly to the source of information. This also, reduces single point of failure and eliminates bottlenecks in the path of information flow, Reduces the Time delay and it provide remarkable ability to overcome from traffic conjection complicated patterns. It makes Efficient information retrieval approach for collaborative cloud computing. both secure and verifiable, without relying on random oracles. Finally, we show an implementation of our
Adaptive Algorithm for Minimizing Cloud Task Length with Prediction Errors
Abstract—Compared to traditional distributed computing like Grid system, it is non-trivial to optimize cloud task’s execution Performance due to its more constraints like user payment budget and divisible resource demand. In this paper, we analyze in-depth our proposed optimal algorithm minimizing task execution length with divisible resources and payment budget: (1) We derive the upper bound of cloud task length, by taking into account both workload prediction errors and host load prediction errors. With such state-of the-art bounds, the worst-case task execution performance is predictable, which can improve the Quality of Service in turn. (2) We design a dynamic version for the algorithm to adapt to the load dynamics over task execution progress, further improving the resource utilization. (3)We rigorously build a cloud prototype over a real cluster environment with 56 virtual machines, and evaluate our algorithm with different levels of resource contention. Cloud users in our cloud system are able to compose various tasks based on off-the-shelf web services. Experiments show that task execution lengths under our algorithm are always close to their theoretical optimal values, even in a competitive situation with limited available resources. We also observe a high level of fair treatment on the resource allocation among all tasks.
IEEE 2014 Transactions on Cloud Computing
Abstract—Compared to traditional distributed computing like Grid system, it is non-trivial to optimize cloud task’s execution Performance due to its more constraints like user payment budget and divisible resource demand. In this paper, we analyze in-depth our proposed optimal algorithm minimizing task execution length with divisible resources and payment budget: (1) We derive the upper bound of cloud task length, by taking into account both workload prediction errors and host load prediction errors. With such state-of the-art bounds, the worst-case task execution performance is predictable, which can improve the Quality of Service in turn. (2) We design a dynamic version for the algorithm to adapt to the load dynamics over task execution progress, further improving the resource utilization. (3)We rigorously build a cloud prototype over a real cluster environment with 56 virtual machines, and evaluate our algorithm with different levels of resource contention. Cloud users in our cloud system are able to compose various tasks based on off-the-shelf web services. Experiments show that task execution lengths under our algorithm are always close to their theoretical optimal values, even in a competitive situation with limited available resources. We also observe a high level of fair treatment on the resource allocation among all tasks.
Secure Outsourced Attribute-Based Signatures
IEEE 2014 TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
Abstract— Attribute-based signature (ABS) is a useful variant of digital signature, which enables users to sign messages over attributes without revealing any information other than the fact that they have attested to the messages. However, heavy computational cost is required during signing in existing work of ABS, which grows linearly with the size of the predicate formula. As a result, this presents a signi_cant challenge for resource-limited users (such as mobile devices) to perform such heavy computation independently. Aiming at tackling the challenge above, we propose and formalize a new paradigm called OABS, in which the computational overhead at user side is greatly reduced through outsourcing such intensive computation to an un trusted signing-cloud service provider (S-CSP). Furthermore, we apply this novel paradigm to existing ABS to reduce complexity and present two schemes, i) in the _rst OABS scheme, the number of exponentiations involving in signing is reduced from O(d) to O(1) (nearly three), where d is the upper bound of threshold value de_ned in the predicate; ii) our second scheme is built on Herranz et al's construction with constant-size signatures. The number of exponentiations in signing is reduced from O(d2) to O(d) and the communication overhead is O(1). Security analysis demonstrates that both OABS schemes are secure in terms of the enforceability and attribute- signer privacy dentitions speci_ed in the proposed security model. Finally, to allow for high e_ciency and exibility, we discuss extensions of OABS and show how to achieve accountability and outsourced veri_cation as well.
IEEE 2014 TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
Abstract— Attribute-based signature (ABS) is a useful variant of digital signature, which enables users to sign messages over attributes without revealing any information other than the fact that they have attested to the messages. However, heavy computational cost is required during signing in existing work of ABS, which grows linearly with the size of the predicate formula. As a result, this presents a signi_cant challenge for resource-limited users (such as mobile devices) to perform such heavy computation independently. Aiming at tackling the challenge above, we propose and formalize a new paradigm called OABS, in which the computational overhead at user side is greatly reduced through outsourcing such intensive computation to an un trusted signing-cloud service provider (S-CSP). Furthermore, we apply this novel paradigm to existing ABS to reduce complexity and present two schemes, i) in the _rst OABS scheme, the number of exponentiations involving in signing is reduced from O(d) to O(1) (nearly three), where d is the upper bound of threshold value de_ned in the predicate; ii) our second scheme is built on Herranz et al's construction with constant-size signatures. The number of exponentiations in signing is reduced from O(d2) to O(d) and the communication overhead is O(1). Security analysis demonstrates that both OABS schemes are secure in terms of the enforceability and attribute- signer privacy dentitions speci_ed in the proposed security model. Finally, to allow for high e_ciency and exibility, we discuss extensions of OABS and show how to achieve accountability and outsourced veri_cation as well.

A Secure Client Side Deduplication Scheme in Cloud Storage Environments
IEEE 2014 TRANSACTIONS ON MOBILITY & SECURITY
Abstract—Recent years have witnessed the trend of leveraging cloud-based services for large scale content storage, processing, and distribution. Security and privacy are among top concerns for the public cloud environments. Towards these security challenges, we propose and implement, on Open Stack Swift, a new client-side deduplication scheme for securely storing and sharing outsourced data via the public cloud. The originality of our proposal is twofold. First, it ensures better confidentiality towards unauthorized users. That is, every client computes a per data key to encrypt the data that he intends to store in the cloud. As such, the data access is managed by the data owner. Second, by integrating access rights in metadata file, an authorized user can decipher an encrypted file only with his private key.
Building Confidential and Efficient Query Services in the Cloud with RASP Data Perturbation
IEEE 2014: Transactions on Computers
Abstract—With the wide deployment of public cloud computing infrastructures, using clouds to host data query services has become an appealing solution for the advantages on scalability and cost-saving. However, some data might be sensitive that the data owner does not want to move to the cloud unless the data confidentiality and query privacy are guaranteed. On the other hand, a secured query service should still provide efficient query processing and significantly reduce the in-house workload to fully realize the benefits of cloud computing. We propose the RASP data perturbation method to provide secure and efficient range query and kNN query services for protected data in the cloud. The RASP data perturbation method combines order preserving encryption, dimensionality expansion, random noise injection, and random projection, to provide strong resilience to attacks on the perturbed data and queries. It also preserves multidimensional ranges, which allows existing indexing techniques to be applied to speedup range query processing. The kNN-R algorithm is designed to work with the RASP range query algorithm to process the kNN queries. We have carefully analyzed the attacks on data and queries under a precisely defined threat model and realistic security assumptions. Extensive experiments have been conducted to show the advantages of this approach on efficiency and security.

Compatibility-aware Cloud Service Composition under Fuzzy Preferences of Users
IEEE 2014 Transactions on Cloud Computing
Abstract—When a single Cloud service (i.e., a software image and a virtual machine), on its own, cannot satisfy all the user requirements, a composition of Cloud services is required. Cloud service composition, which includes several tasks such as discovery, compatibility checking, selection, and deployment, is a complex process and users find it difficult to select the best one among the hundreds, if not thousands, of possible compositions available. Service composition in Cloud raises even new challenges caused by diversity of users with different expertise requiring their applications to be deployed across difference geographical locations with distinct legal constraints. The main difficulty lies in selecting a combination of virtual appliances (software images) and infrastructure services that are compatible and satisfy a user with vague preferences. Therefore, we Present a framework and algorithms which simplify Cloud service composition for unskilled users. We develop an ontology based approach to analyze Cloud service compatibility by applying reasoning on the expert knowledge. In addition, to minimize effort of users in expressing their preferences, we apply combination of evolutionary algorithms and fuzzy logic for composition optimization. This lets users express their needs in linguistics terms which brings a great comfort to them compared to systems that force users to assign exact weights for all preferences.
Consistency as a Service: Auditing Cloud Consistency
IEEE 2014 Transactions on Network and Service Management
Abstract—Cloud storage services have become commercially popular due to their overwhelming advantages. To provide ubiquitous always-on access, a cloud service provider (C S P) maintains multiple replicas for each piece of data on geographically distributed servers. A key problem of using the replication technique in clouds is that it is very expensive to achieve strong consistency on a worldwide scale. In this paper, we first present a novel consistency as a service (CaaS) model, which consists of a large data cloud and multiple small audit clouds. In the CaaS model, a data cloud is maintained by a CSP, and a group of users that constitute an audit cloud can verify whether the data cloud provides the promised level of consistency or not. We propose a two-level auditing architecture, which only requires a loosely synchronized clock in the audit cloud. Then, we design Algorithms to quantify the severity of violations with two metrics: the commonality of violations, and the staleness of the value of a read. Finally, we devise a heuristic auditing strategy (HAS) to reveal as many violations as possible. Extensive experiments were performed using a combination of simulations and real cloud deployments to validate HAVE.
Data Similarity-Aware Computation Infrastructure for the Cloud
IEEE 2014 Transactions on Computer
Abstract—The cloud is emerging for scalable and efficient cloud services. To meet the needs of handling massive data and decreasing data migration, the computation infrastructure requires efficient data placement and proper management for cached data. In this paper, we propose an efficient and cost-effective multilevel caching scheme, called MERCURY, as computation infrastructure of the cloud. The idea behind MERCURY is to explore and exploit data similarity and support efficient data placement. To accurately and efficiently capture the data similarity, we leverage a low-complexity locality-sensitive hashing (LSH). In our design, in addition to the problem of space inefficiency, we identify that a conventional LSH scheme also suffers from the problem of homogeneous data placement. To address these two problems, we design a novel multi core-enabled locality-sensitive hashing (MC-LSH) that accurately captures the differentiated similarity across data. The similarity-aware MERCURY, hence, partitions data into the L1 cache, L2 cache, and main memory based on their distinct localities, which help optimize cache utilization and minimize the pollution in the last-level cache. Besides extensive evaluation through simulations, we also implemented MERCURY in a system. Experimental results based.On real-world applications and data sets demonstrate the efficiency and efficacy of our proposed schemes.
IEEE 2014 Transactions on Computer
Abstract—The cloud is emerging for scalable and efficient cloud services. To meet the needs of handling massive data and decreasing data migration, the computation infrastructure requires efficient data placement and proper management for cached data. In this paper, we propose an efficient and cost-effective multilevel caching scheme, called MERCURY, as computation infrastructure of the cloud. The idea behind MERCURY is to explore and exploit data similarity and support efficient data placement. To accurately and efficiently capture the data similarity, we leverage a low-complexity locality-sensitive hashing (LSH). In our design, in addition to the problem of space inefficiency, we identify that a conventional LSH scheme also suffers from the problem of homogeneous data placement. To address these two problems, we design a novel multi core-enabled locality-sensitive hashing (MC-LSH) that accurately captures the differentiated similarity across data. The similarity-aware MERCURY, hence, partitions data into the L1 cache, L2 cache, and main memory based on their distinct localities, which help optimize cache utilization and minimize the pollution in the last-level cache. Besides extensive evaluation through simulations, we also implemented MERCURY in a system. Experimental results based.On real-world applications and data sets demonstrate the efficiency and efficacy of our proposed schemes.
Maximizing Revenue with Dynamic Cloud Pricing: The Infinite Horizon Case
Abstract—We study the infinite horizon dynamic pricing problem for an infrastructure cloud provider in the emerging cloud computing paradigm. The cloud provider, such as Amazon, provides computing capacity in the form of virtual instances and charges customers a time-varying price for the period they use the instances. The provider’s problem is then to find an optimal pricing policy, in face of stochastic demand arrivals and departures, so that the average expected revenue is maximized in the long run. We adopt a revenue management framework to tackle the problem. Optimality conditions and structural results are obtained for our stochastic formulation, which yield insights on the optimal pricing strategy. Numerical results verify our analysis and reveal additional properties of optimal pricing policies for the Infinite horizon case.
.
IEEE 2014 Transactions on Parallel and Distributed Systems
Abstract—To protect outsourced data in cloud storage against corruptions, enabling integrity protection, fault tolerance, and efficient recovery for cloud storage becomes critical. Regenerating codes provide fault tolerance by striping data across multiple servers, while using less repair traffic than traditional erasure codes during failure recovery. Therefore, we study the problem of remotely checking the integrity of regenerating-coded data against corruptions under a real-life cloud storage setting. We Design and implement a practical data integrity protection (DIP) scheme for a specific regenerating code, while preserving the intrinsic properties of fault tolerance and repair traffic saving. Our DIP scheme is designed under a Byzantine adversarial model, and enables a client to feasibly verify the integrity of random subsets of outsourced data against general or malicious corruptions. It works under the simple assumption of thin-cloud storage and allows different parameters to be fine-tuned for the performance-security trade-off. We implement and evaluate the overhead of our DIP scheme in a real cloud storage test bed under different parameter choices. We demonstrate that remote integrity checking can be feasibly integrated into regenerating codes in practical deployment.
Key-Aggregate Cryptosystem for Scalable Data Sharing in Cloud Storage
IEEE 2014 :Transactions on Parallel and Distributed Systems
Abstract—Data sharing is an important functionality in cloud storage. In this article, we show how to securely, efficiently, and flexibly share data with others in cloud storage. We describe new public-key cryptosystems which produce constant-size cipher texts such that efficient delegation of decryption rights for any set of cipher texts are possible. The novelty is that one can aggregate any set of secret keys and make them as compact as a single key, but encompassing the power of all the keys being aggregated. In other words, the secret key holder can release a constant-size aggregate key for flexible choices of cipher text set in cloud storage, but the other encrypted files outside the set remain confidential. This compact aggregate key can be conveniently sent to others or be stored in a smart card with very limited secure storage. We provide formal security analysis of our schemes in the standard model. We also describe other application of our schemes. In particular, our schemes give the first public-key patient-controlled encryption for flexible hierarchy, which was yet to be known.
IEEE 2014 :Transactions on Parallel and Distributed Systems
Abstract—Data sharing is an important functionality in cloud storage. In this article, we show how to securely, efficiently, and flexibly share data with others in cloud storage. We describe new public-key cryptosystems which produce constant-size cipher texts such that efficient delegation of decryption rights for any set of cipher texts are possible. The novelty is that one can aggregate any set of secret keys and make them as compact as a single key, but encompassing the power of all the keys being aggregated. In other words, the secret key holder can release a constant-size aggregate key for flexible choices of cipher text set in cloud storage, but the other encrypted files outside the set remain confidential. This compact aggregate key can be conveniently sent to others or be stored in a smart card with very limited secure storage. We provide formal security analysis of our schemes in the standard model. We also describe other application of our schemes. In particular, our schemes give the first public-key patient-controlled encryption for flexible hierarchy, which was yet to be known.
Low-Carbon Routing Algorithms for Cloud Computing Services in IP-over-WDM Networks
IEEE 2014 Journal on Selected Areas in Communications
Abstract—Energy consumption in telecommunication networks keeps growing rapidly, mainly due to emergence of new Cloud Computing (CC) services that need to be supported by large data centers that consume a huge amount of energy and, in turn, cause the emission of enormous quantity of CO2. Given the decreasing availability of fossil fuels and the raising concern about global warming, research is now focusing on novel “low-carbon” telecom solutions. E.g., based on today telecom technologies, data centers can be located near renewable energy plants and data can then be effectively transferred to these locations via reconfigurable optical networks, based on the principle that data can be moved more efficiently than electricity. This paper focuses on how to dynamically route on-demand optical circuits that are established to transfer energy-intensive data processing towards data centers powered with renewable energy. Our main contribution consists in devising two routing algorithms for connections supporting CC services, aimed at minimizing the CO2 emissions of data centers by following the current availability of renewable energy (Sun and Wind). The trade-off with energy consumption for the transport equipments is also considered. The results show that relevant reductions, up to about 30% in CO2 emissions can be achieved using our approaches compared to baseline shortest path- based routing strategies, paying off only a marginal increase in terms of network blocking probability
IEEE 2014 Journal on Selected Areas in Communications
Abstract—Energy consumption in telecommunication networks keeps growing rapidly, mainly due to emergence of new Cloud Computing (CC) services that need to be supported by large data centers that consume a huge amount of energy and, in turn, cause the emission of enormous quantity of CO2. Given the decreasing availability of fossil fuels and the raising concern about global warming, research is now focusing on novel “low-carbon” telecom solutions. E.g., based on today telecom technologies, data centers can be located near renewable energy plants and data can then be effectively transferred to these locations via reconfigurable optical networks, based on the principle that data can be moved more efficiently than electricity. This paper focuses on how to dynamically route on-demand optical circuits that are established to transfer energy-intensive data processing towards data centers powered with renewable energy. Our main contribution consists in devising two routing algorithms for connections supporting CC services, aimed at minimizing the CO2 emissions of data centers by following the current availability of renewable energy (Sun and Wind). The trade-off with energy consumption for the transport equipments is also considered. The results show that relevant reductions, up to about 30% in CO2 emissions can be achieved using our approaches compared to baseline shortest path- based routing strategies, paying off only a marginal increase in terms of network blocking probability
Integrity Verification in Multi-Cloud Storage Using Cooperative Provable Data Possession
IEEE 2014 TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS
Abstract— Storage outsourcing in cloud computing is a rising trend which prompts a number of interesting security issues. Provable data possession (PDP) is a method for ensuring the integrity of data in storage outsourcing. This research addresses the construction of efficient PDP which called as Cooperative PDP (CPDP) mechanism for distributed cloud storage to support data migration and scalability of service, which considers the existence of multiple cloud service providers to collaboratively store and maintain the clients’ data. Cooperative PDP (CPDP) mechanism is based on homomorphic verifiable response, hash index hierarchy for dynamic scalability, cryptographic encryption for security. Moreover, it proves the security of scheme based on multi-prover zero knowledge proof system, which can satisfy knowledge soundness, completeness, and zero-knowledge properties. This research introduces lower computation and communication overheads in comparison with non-cooperative approaches.
NCCloud: A Network-Coding-Based Storage System in a Cloud-of-Clouds
Abstract—To provide fault tolerance for cloud storage, recent studies propose to stripe data across multiple cloud vendors. However, if a cloud suffers from a permanent failure and loses all its data, we need to repair the lost data with the help of the other surviving clouds to preserve data redundancy. We present a proxy-based storage system for fault-tolerant multiple-cloud storage called NCCloud, which achieves cost-effective repair for a permanent single-cloud failure. NCCloud is built on top of a network-coding-based storage scheme called the functional minimum-storage regenerating (FMSR) codes, which maintain the same fault tolerance and data redundancy as in traditional erasure codes (e.g., RAID-6), but use less repair traffic and hence incur less monetary cost due to data transfer. One key design feature of our FMSR codes is that we relax the encoding requirement of storage nodes during repair, while preserving the benefits of network coding in repair. We implement a proof-of-concept prototype of NCCloud and deploy it atop both local and commercial clouds. We validate that FMSR codes provide significant monetary cost savings in repair over RAID-6 codes, while having comparable response time performance in normal cloud storage operations such as upload/download.
IEEE 2014 Transactions on Computers
Abstract—To provide fault tolerance for cloud storage, recent studies propose to stripe data across multiple cloud vendors. However, if a cloud suffers from a permanent failure and loses all its data, we need to repair the lost data with the help of the other surviving clouds to preserve data redundancy. We present a proxy-based storage system for fault-tolerant multiple-cloud storage called NCCloud, which achieves cost-effective repair for a permanent single-cloud failure. NCCloud is built on top of a network-coding-based storage scheme called the functional minimum-storage regenerating (FMSR) codes, which maintain the same fault tolerance and data redundancy as in traditional erasure codes (e.g., RAID-6), but use less repair traffic and hence incur less monetary cost due to data transfer. One key design feature of our FMSR codes is that we relax the encoding requirement of storage nodes during repair, while preserving the benefits of network coding in repair. We implement a proof-of-concept prototype of NCCloud and deploy it atop both local and commercial clouds. We validate that FMSR codes provide significant monetary cost savings in repair over RAID-6 codes, while having comparable response time performance in normal cloud storage operations such as upload/download.
Optimal Power Allocation and Load Distribution for Multiple Heterogeneous Multi core Server Processors across Clouds and Data Centers
IEEE 2014 : Transactions on Computer
Abstract—For multiple heterogeneous multi core server processors across clouds and data centers, the aggregated performance of the cloud of clouds can be optimized by load distribution and balancing. Energy efficiency is one of the most important issues for large scale server systems in current and future data centers. The multi core processor technology provides new levels of performance and energy efficiency. The present paper aims to develop power and performance constrained load distribution methods for cloud computing in current and future large-scale data centers. In particular, we address the problem of optimal power allocation and load distribution for multiple heterogeneous multi core server processors across clouds and data centers. Our strategy is to formulate optimal power allocation and load distribution for multiple servers in a cloud of clouds as optimization problems, i.e., power constrained performance optimization and performance constrained power optimization. Our research problems in large-scale data centers are well-defined multivariable optimization problems, which explore the power-performance tradeoff by fixing one factor and minimizing the other, from the perspective of optimal load distribution. It is clear that such power and performance optimization is important for a cloud computing provider to efficiently utilize all the available resources. We model a multi core server processor as a queuing system with multiple servers. Our optimization problems are solved for two different models of core speed, where one model assumes that a core runs at zero speed when it is idle, and the other model assumes that a core runs at a constant speed. Our results in this paper provide new theoretical insights into power management and performance optimization in data centers.
Oruta: Privacy-Preserving Public Auditing for Shared Data in the Cloud
IEEE 2014 Transactions on Cloud Computing
Abstract—With cloud storage services, it is commonplace for data to be not only stored in the cloud, but also shared across multiple users. However, public auditing for such shared data — while preserving identity privacy — remains to be an open challenge. In this paper, we propose the first privacy-preserving mechanism that allows public auditing on shared data stored in the cloud. In particular, we exploit ring signatures to compute the verification information needed to audit the integrity of shared data. With our mechanism, the identity of the signer on each block in shared data is kept private from a third party auditor (TPA), who is still able to verify the integrity of shared data without retrieving the entire file. Our experimental results demonstrate the effectiveness and efficiency of our proposed mechanism when auditing shared data.
IEEE 2014 Transactions on Cloud Computing
Abstract—With cloud storage services, it is commonplace for data to be not only stored in the cloud, but also shared across multiple users. However, public auditing for such shared data — while preserving identity privacy — remains to be an open challenge. In this paper, we propose the first privacy-preserving mechanism that allows public auditing on shared data stored in the cloud. In particular, we exploit ring signatures to compute the verification information needed to audit the integrity of shared data. With our mechanism, the identity of the signer on each block in shared data is kept private from a third party auditor (TPA), who is still able to verify the integrity of shared data without retrieving the entire file. Our experimental results demonstrate the effectiveness and efficiency of our proposed mechanism when auditing shared data.
Towards Differential Query Services in Cost-Efficient Clouds
IEEE 2014 Transactions on Parallel and Distributed Systems
Abstract—Cloud computing as an emerging technology trend is expected to reshape the advances in information technology. In a cost efficient cloud environment, a user can tolerate a certain degree of delay while retrieving information from the cloud to reduce costs. In this paper, we address two fundamental issues in such an environment: privacy and efficiency. We first review a private keyword-based file retrieval scheme that was originally proposed by Ostrovsky. Their scheme allows a user to retrieve files of interest from an un trusted server without leaking any information. The main drawback is that it will cause a heavy querying overhead incurred on the cloud, and thus goes against the original intention of cost efficiency. In this paper, we present a scheme, termed efficient information retrieval for ranked query (EIRQ), based on an aggregation and distribution layer (ADL), to reduce querying overhead incurred on the cloud. In EIRQ, queries are classified into multiple ranks, where a higher ranked query can retrieve a higher percentage of matched files. A user can retrieve files on demand by choosing queries of different ranks. This feature is useful when there are a large number of matched files, but the user only needs a small subset of them. Under different parameter settings, extensive evaluations have been conducted on both analytical models and on a real cloud environment, in order to examine the effectiveness of our schemes.
Scalable Distributed Service Integrity Attestation for Software-as-a-Service Clouds
Abstract—Software-as-a-Service (SaaS) cloud systems enable application service providers to deliver their applications via massive cloud computing infrastructures. However, due to their sharing nature, SaaS clouds are vulnerable to malicious attacks. In this paper, we present IntTest, a scalable and effective service integrity attestation framework for SaaS clouds. Int Test provides a novel integrated attestation graph analysis scheme that can provide stronger attacker pinpointing power than previous schemes. Moreover, IntTest can automatically enhance result quality by replacing bad results produced by malicious attackers with good results produced by benign service providers. We have implemented a prototype of the IntTest system and tested it on a production cloud computing infrastructure using IBM System S stream processing applications. Our experimental results show that IntTest can achieve higher attacker pinpointing accuracy than existing approaches. IntTest does not require any special hardware or secure kernel support and imposes little performance impact to the application, which makes it practical for large scale cloud systems.
IEEE 2014 Transactions on Parallel and Distributed Systems
Abstract—Software-as-a-Service (SaaS) cloud systems enable application service providers to deliver their applications via massive cloud computing infrastructures. However, due to their sharing nature, SaaS clouds are vulnerable to malicious attacks. In this paper, we present IntTest, a scalable and effective service integrity attestation framework for SaaS clouds. Int Test provides a novel integrated attestation graph analysis scheme that can provide stronger attacker pinpointing power than previous schemes. Moreover, IntTest can automatically enhance result quality by replacing bad results produced by malicious attackers with good results produced by benign service providers. We have implemented a prototype of the IntTest system and tested it on a production cloud computing infrastructure using IBM System S stream processing applications. Our experimental results show that IntTest can achieve higher attacker pinpointing accuracy than existing approaches. IntTest does not require any special hardware or secure kernel support and imposes little performance impact to the application, which makes it practical for large scale cloud systems.
QoS-Aware Data Replication for Data-Intensive Applications in Cloud Computing Systems
IEEE 2014 Transactions on Cloud Computing
Abstract—Cloud computing provides scalable computing and storage resources. More and more data-intensive applications are developed in this computing environment. Different applications have different quality-of-service (QoS) requirements. To continuously support the QoS requirement of an application after data corruption, we propose two QoS-aware data replication (QADR) algorithms in cloud computing systems. The first algorithm adopts the intuitive idea of high-QoS first-replication (HQFR) to perform data replication. However, this greedy algorithm cannot minimize the data replication cost and the number of QoS-violated data replicas. To achieve these two minimum objectives, the second algorithm transforms the QADR problem into the well-known minimum-cost maximum-flow (MCMF) problem. By applying the existing MCMF algorithm to solve the QADR problem, the second algorithm can produce the optimal solution to the QADR problem in polynomial time, but it takes more computational time than the first algorithm. Moreover, it is known that a cloud computing system usually has a large number of nodes. We also propose node combination techniques to reduce the possibly large data replication time. Finally, simulation experiments are performed to demonstrate the effectiveness of the proposed algorithms in the data replication and recovery.
Ensuring Integrity Proof in Hierarchical Attribute Encryption Scheme using Cloud Computing
IEEE 2014 TRANSACTIONS ON CONGITIVE SCIENCE, ENGINEERING AND TECHNOLOGY
Abstract— It has been widely observed that the concept of cloud computing has become one of the major theory in the world of IT industry. Data owners decide to release their burden of storing and maintaining the data locally by storing it over the cloud. Cloud storage moves the owner’s data to large data centers which are remotely located on which data owner does not have any control. However, this unique feature of the cloud poses many new security challenges. One of the important concerns that need to be addressed is access control of outsourced data in cloud. Numbers of schemes have been proposed to achieve the access control of outsourced data like hierarchical attribute set based encryption [HASBE] by extending cipher-text-policy attribute set based encryption [CP-ABE]. Even though HASBE scheme achieves scalability, flexibility and fine grained access control, it fails to prove the data integrity in the cloud. However, the fact that owners no longer have physical possession of data indicates that they are facing a potentially formidable risk for missing or corrupted data, because sometimes the cloud service provider modifies or deletes the data in the cloud without the knowledge or permission of data owner. Hence in order to avoid this security risk, in this paper we propose a method which gives data integrity proof for HASBE scheme. Data integrity refers to maintaining and assuring the accuracy and consistency of data over its entire life-cycle.
Public Auditing for Shared Data with Efficient User Revocation in the Cloud
IEEE 2014 Transactions on Services Computing
Abstract—With data services in the cloud, users can easily modify and share data as a group. To ensure data integrity can be audited publicly, users need to compute signatures on all the blocks in shared data. Different blocks are signed by different users due to data modifications performed by different users. For security reasons, once a user is revoked from the group, the blocks, which were previously signed by this revoked user, must be re-signed by an existing user. The straightforward method, which allows an existing user to download the corresponding part of shared data and re-sign it during user revocation, is
IEEE 2014 Transactions on Services Computing
Abstract—With data services in the cloud, users can easily modify and share data as a group. To ensure data integrity can be audited publicly, users need to compute signatures on all the blocks in shared data. Different blocks are signed by different users due to data modifications performed by different users. For security reasons, once a user is revoked from the group, the blocks, which were previously signed by this revoked user, must be re-signed by an existing user. The straightforward method, which allows an existing user to download the corresponding part of shared data and re-sign it during user revocation, is
Inefficient due to the large size of shared data in the cloud. In this paper, we propose a novel public auditing mechanism for the integrity of shared data with efficient user revocation in mind. By utilizing proxy re-signatures, we allow the cloud to re-sign blocks on behalf of existing users during user revocation, so that existing users do not need to download and re-sign blocks by themselves. In addition, a public verifier is always able to audit the integrity of shared data without retrieving the entire data from the cloud, even if some part of shared data has been re-signed by the cloud. Experimental results show that our mechanism can significantly improve the efficiency of user revocation.
Attribute-Based Encryption with Verifiable Outsourced Decryption
IEEE 2013 Transactions on Cloud Computing
Abstract—Attribute-based encryption (ABE) is a public-key-based one-to-many encryption that allows users to encrypt and decrypt data based on user attributes. A promising application of ABE is flexible access control of encrypted data stored in the cloud, using access polices and ascribed attributes associated with private keys and cipher texts. One of the main efficiency drawbacks of the existing ABE schemes is that decryption involves expensive pairing operations and the number of such operations grows with the complexity of the access policy. Recently, Greenetal. Proposed an ABE system with outsourced decryption that largely elimi-nates the decryption overhead for users. In such a system, a user provides an un trusted server, say a cloud service provider, with a transformation key that allows the cloud to translate any ABE cipher text satisfied by that user’s attributes or access policy into a simple cipher text, and it only incurs a small computational over-head for the user to recover the plaintext from the transformed cipher text. Security of an ABE system with outsourced decryption ensures that an adversary (including a malicious cloud) will not be able to learn anything about the encrypted message; however, it does not guarantee the correctness of the transformation done by the cloud. In this paper, we consider a new requirement of ABE with outsourced decryption: verifiability. Informally, verifiability guarantees that a user can efficiently check if the transformation is done correctly. We give the formal model of ABE with verifiable outsourced decryption and propose a concrete scheme. We prove that our new scheme is both secure and verifiable, without relying on random oracles. Finally, we show an implementation of our scheme and result of performance measurements, which indicates a significant reduction on computing resources imposed on users.
IEEE 2013 Transactions on Cloud Computing
Abstract— Currently, the amount of sensitive data produced by many organizations is outpacing their storage ability. The management of such huge amount of data is quite expensive due to the requirements of high storage capacity and qualified personnel. Storage-as-a-Service (SaaS) offered by cloud service providers (CSPs) is a paid facility that enables organizations to outsource their data to be stored on remote servers. Thus, SaaS reduces the maintenance cost and mitigates the burden of large local data storage at the organization’s end. A data owner pays for a desired level of security and must get some compensation in case of any misbehavior committed by the CSP. On the other hand, the CSP needs a protection from any false accusation that may be claimed by the owner to get illegal compensations. In this paper, we propose a cloud-based storage scheme that allows the data owner to benefit from the facilities offered by the CSP and enables indirect mutual trust between them. The proposed scheme has four important features: it allows the owner to outsource sensitive data to a CSP, and perform full block-level dynamic operations on the outsourced data, i.e., block modification, insertion, deletion, and append, it ensures that authorized users (i.e., those who have the right to access the owner’s file) receive the latest version of the outsourced data, it enables indirect mutual trust between the owner and the CSP, and it allows the owner to grant or revoke access to the outsourced data. We discuss the security issues of the proposed scheme. Besides, we justify its performance through theoretical analysis and experimental evaluation of storage, communication, and computation overheads.
Abstract— Currently, the amount of sensitive data produced by many organizations is outpacing their storage ability. The management of such huge amount of data is quite expensive due to the requirements of high storage capacity and qualified personnel. Storage-as-a-Service (SaaS) offered by cloud service providers (CSPs) is a paid facility that enables organizations to outsource their data to be stored on remote servers. Thus, SaaS reduces the maintenance cost and mitigates the burden of large local data storage at the organization’s end. A data owner pays for a desired level of security and must get some compensation in case of any misbehavior committed by the CSP. On the other hand, the CSP needs a protection from any false accusation that may be claimed by the owner to get illegal compensations. In this paper, we propose a cloud-based storage scheme that allows the data owner to benefit from the facilities offered by the CSP and enables indirect mutual trust between them. The proposed scheme has four important features: it allows the owner to outsource sensitive data to a CSP, and perform full block-level dynamic operations on the outsourced data, i.e., block modification, insertion, deletion, and append, it ensures that authorized users (i.e., those who have the right to access the owner’s file) receive the latest version of the outsourced data, it enables indirect mutual trust between the owner and the CSP, and it allows the owner to grant or revoke access to the outsourced data. We discuss the security issues of the proposed scheme. Besides, we justify its performance through theoretical analysis and experimental evaluation of storage, communication, and computation overheads.

IEEE 2013: Mona: Secure Multi- Owner Data Sharing for Dynamic Groups in the Cloud
IEEE 2013 Transactions on Parallel and Distributed Systems
Abstract—With the character of low maintenance, cloud computing provides an economical and efficient solution for sharing group resource among cloud users. Unfortunately, sharing data in a multi-owner manner while preserving data and identity privacy from an untrusted cloud is still a challenging issue, due to the frequent change of the membership. In this paper, we propose a secure multi-owner data sharing scheme, named Mona, for dynamic groups in the cloud. By leveraging group signature and dynamic broadcast encryption techniques, any cloud user can anonymously share data with others. Meanwhile, the storage overhead and encryption computation cost of our scheme are independent with the number of revoked users. In addition, we analyze the security of our scheme with rigorous proofs, and demonstrate the efficiency of our scheme in experiments.

IEEE 2013 :Enabling Data Dynamic and Indirect Mutual Trust for Cloud Computing Storage Systems
IEEE 2013 Transaction on Parallel and Distributed Systems

IEEE 2014 TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
Dynamic Resource Allocation using Virtual Machines for Cloud Computing Environment
Abstract— Cloud computing allows business customers to scale up and down their resource usage based on needs. Many of the touted gains in the cloud model come from resource multiplexing through virtualization technology. In this paper, we present a system that uses virtualization technology to allocate data center resources dynamically based on application demands and support green computing by optimizing the number of servers in use. We introduce the concept of “skewness” to measure the unevenness in the multi-dimensional resource utilization of a server. By minimizing skewness, we can combine different types of workloads nicely and improve the overall utilization of server resources. We develop a set of heuristics that prevent overload in the system effectively while saving energy used. Trace driven simulation and experiment results demonstrate that our algorithm achieves good performance.
IEEE 2014 TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
Abstract— Governments are fac-ing reductions in ICT budgets just as users are increasing demands for electronic services. One solution announced aggressively by vendors is cloud computing. Cloud comput-ing is not a new technology, but as described by Jackson] is a new way of offering services, taking into consideration business and economic models for providing and consuming ICT services. Here we explain the impact and benefits for public organizations of cloud services and explore issues of why governments are slow to adopt use of the cloud. The exist-ing literature does not cover this subject in detail, especially for European organizations

IEEE 2014 TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
Scalable and Secure Sharing of Personal Health Records in Cloud Computing using Attribute-based Encryption

IEEE 2013: A Load Balancing Model Based on Cloud Partitioning for the Public Cloud
IEEE TRANSACTIONS ON CLOUD COMPUTING YEAR 2013
Abstract— Load balancing in the cloud computing environment has an important impact on the performance. Good load balancing makes cloud computing more efficient and improves user satisfaction. This article introduces a better load balance model for the public cloud based on the cloud partitioning concept with a switch mechanism to choose different strategies for different situations. The algorithm applies the game theory to the load balancing strategy to improve the efficiency in the public cloud environment. Key words: load balancing model; public cloud; cloud partition; game theory

IEEE 2013 : Load Re balancing for Distributed File Systems in Clouds
IEEE 2013 Transactions on Parallel and Distributed Systems
Abstract—Distributed file systems are key building blocks for cloud computing applications based on the Map Reduce programming paradigm. In such file systems, nodes simultaneously serve computing and storage functions; a file is partitioned into a number of chunks allocated in distinct nodes so that Map Reduce tasks can be performed in parallel over the nodes. However, in a cloud computing environment, failure is the norm, and nodes may be upgraded, replaced, and added in the system. Files can also be dynamically created, deleted, and appended. This results in load imbalance in a distributed file system; that is, the file chunks are not distributed as uniformly as possible among the nodes. Emerging distributed file systems in production systems strongly depend on a central node for chunk reallocation. This dependence is clearly inadequate in a large-scale, failure-prone environment because the central load balance is put under considerable workload that is linearly scaled with the system size, and may thus become the performance bottleneck and the single point of failure. In this paper, a fully distributed load re balancing algorithm is presented to cope with the load imbalance problem. Our algorithm is compared against a centralized approach in a production system and a competing distributed solution presented in the literature. The simulation results indicate that our proposal is comparable with the existing centralized approach and considerably outperforms the prior distributed algorithm in terms of load imbalance factor, movement cost, and algorithmic overhead. The performance of our proposal implemented in
the Hadoop distributed file system is further investigated in a cluster environment.

IEEE 2013 :Attribute-Based Encryption with Verifiable Outsourced Decryption
IEEE 2013 Transactions on Information Forensics and Security
Abstract—Attribute-based encryption (ABE) is a public-key-based one-to-many encryption that allows users to encrypt and decrypt data based on user attributes. A promising application of ABE is flexible access control of encrypted data stored in the cloud, using access polices and ascribed attributes associated with private keys and cipher texts. One of the main efficiency drawbacks of the existing ABE schemes is that decryption involves expensive pairing operations and the number of such operations grows with the complexity of the access policy. Recently, Greenetal. proposed an ABE system with outsourced decryption that largely elimi-nates the decryption overhead for users. In such a system, a user provides an un trusted server, say a cloud service provider, with a transformation key that allows the cloud to translate any ABE cipher text satisfied by that user’s attributes or access policy into a simple cipher text, and it only incurs a small computational over-head for the user to recover the plain text from the transformed cipher text. Security of an ABE system with outsourced decryption ensures that an adversary (including a malicious cloud) will not be able to learn anything about the encrypted message; however, it does not guarantee the correctness of the transformation done by the cloud. In this paper, we consider a new requirement of ABE with outsourced decryption: verifiability. Informally, verifiability guarantees that a user can efficiently check if the transformation is done correctly. We give the formal model of ABE with verifiable outsourced decryption and propose a concrete scheme. We prove that our new scheme is both secure and verifiable, without relying on random oracles. Finally, we show an implementation of our

IEEE 2013: Towards Differential Query Services in Cost-Efficient Clouds
IEEE 2013 Transactions on Parallel and Distributed Systems
Abstract—Cloud computing as an emerging technology trend is expected to reshape the advances in information technology. In a cost-efficient cloud environment, a user can tolerate a certain degree of delay while retrieving information from the cloud to reduce costs. In this paper, we address two fundamental issues in such an environment: privacy and efficiency. We first review a private keyword-based file retrieval scheme that was originally proposed by Ostrovsky. Their scheme allows a user to retrieve files of interest from an un trusted server without leaking any information. The main drawback is that it will cause a heavy querying overhead incurred on the cloud, and thus goes against the original intention of cost efficiency. In this paper, we present a scheme, termed efficient information retrieval for ranked query (EIRQ), based on an aggregation and distribution layer (ADL), to reduce querying overhead incurred on the cloud. In EIRQ, queries are classified into multiple ranks, where a higher ranked query can retrieve a higher percentage of matched files. A user can retrieve files on demand by choosing queries of different ranks. This feature is useful when there are a large number of matched files, but the user only needs a small subset of them. Under different parameter settings, extensive evaluations have been conducted on both analytical models and on a real cloud environment, in order to examine the effectiveness of our schemes.

IEEE 2013: Security and Privacy Enhancing Multi-Cloud Architectures
IEEE 2013 Transaction on Dependable and Secure Computing
Abstract—Security challenges are still amongst the biggest obstacles when considering the adoption of cloud services. This triggered a lot of research activities, resulting in a quantity of proposals targeting the various cloud security threats. Alongside with these security issues the cloud paradigm comes with a new set of unique features which open the path towards novel security approaches, techniques and architectures. This paper provides a survey on the achievable security merits by making use of multiple distinct clouds simultaneously. Various distinct architectures are introduced and discussed according to their security and privacy capabilities and prospects.

IEEE 2013 :Toward a reliable, secure and fault tolerant smart grid state estimation in the cloud
IEEE 2013 Transactions on Innovative Smart Grid
Abstract—The collection and prompt analysis of synchrophasor measurements is a key step towards enabling the future smart power grid, in which grid management applications would be deployed to monitor and react intelligently to changing conditions. The potential exists to slash inefficiencies and to adaptively reconfigure the grid to take better advantage of renewable, coordinate and share reactive power, and to reduce the risk of catastrophic large-scale outages. However, to realize this potential, a number of technical challenges must be overcome. We describe a continuously active, timely monitoring framework that we have created, architect ed to support a wide range of grid-control applications in a standard manner designed to leveragecloud computing. Cloud computing systems bring significant advantages, including an elastic, highly available and cost-effective compute infrastructure well-suited for this application. We believe that by showing how challenges of reliability, timeliness, and security can be addressed while leveraging cloud standards, our work opens the door for wider exploitation of the cloud by the smart grid community. This paper characterizes a PMU-based state-estimation application, explains how the desired system maps to a cloud architecture, identifies limitations in the standard cloud infrastructure relative to the needs of this use case, and then shows how we adapt the basic cloud platform options with sophisticated technologies of our own to achieve the required levels of usability, fault tolerance, and parallelism

IEEE 2013: Privacy Preserving Delegated Access Control in Public Clouds
IEEE 2013 Transactions on Knowledge and Data Engineering

IEEE 2013 :Winds of Change From Vendor Lock-In to the Meta Cloud
IEEE 2013 Transactions on Internet Computing
Abstract—The cloud computing paradigm has achieved widespread adoption in recent years. Its success is due largely to customers’ ability to use services on demand with a pay-as-you go pricing model, which has proved convenient in many respects. Low costs and high flexibility make migrating to the cloud compelling. Despite its obvious advantages, however, many companies hesitate to “move to the cloud,” mainly because of concerns related to service availability, data lock-in, and legal uncertainties.1 Lock in is particularly problematic. For one thing, even though public cloud availability is generally high, outages still occur.2 Businesses locked into such a cloud are essentially at a standstill until the cloud is back online. Moreover, public cloud providers generally don’t guarantee particular service level agreements (SLAs)3 — that is, businesses locked into a cloud have no guarantees that it will continue to provide the required quality of service (QoS). Finally, most public cloud providers’ terms of service let that provider unilaterally change pricing at any time. Hence, a business locked into a cloud has no mid- or long term control over its own IT costs.

IEEE 2013: Privacy-assured Outsourcing of Image Reconstruction Service in Cloud
IEEE 2013 Transaction on Emerging Topics in Computing
Abstract—Large-scale image data sets are being exponentially generated today. Along with such data explosion is the fast growing trend to outsource the image management systems to the cloud for its abundant computing resources and benefits. However, how to protect the sensitive data while enabling outsourced image services becomes a major concern. To address these challenges, we propose OIRS, a novel outsourced image recovery service architecture, which exploits different domain technologies and takes security, efficiency, and design complexity into consideration from the very beginning of the service flow. Specifically, we choose to design OIRS under the compressed sensing (CS) framework, which is known for its simplicity of unifying the traditional sampling and compression for image acquisition. Data owners only need to outsource compressed image samples to cloud for reduced storage overhead. Besides, in OIRS, data users can harness the cloud to securely reconstruct images without revealing information from either the compressed image samples or the underlying image content. We start with the OIRS design for sparse data, which is the typical application scenario for compressed sensing, and then show its natural extension to the general data for meaningful tradeoffs between efficiency and accuracy. We thoroughly analyses the privacy-protection of OIRS and conduct extensive experiments to demonstrate the system effectiveness and efficiency. For completeness, we also discuss the expected performance speedup of OIRS through hardware built-in system design.

Privacy-Preserving Public Auditing for Secure Cloud Storage
IEEE 2014 TRANSACTIONS ON COMPUTERS

Integrity Verification in Multi-Cloud Storage Using Cooperative Provable Data Possession
IEEE 2014 TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
Abstract— Storage outsourcing in cloud computing is a rising trend which prompts a number of interesting security issues. Provable data possession (PDP) is a method for ensuring the integrity of data in storage outsourcing. This research addresses the construction of efficient PDP which called as Cooperative PDP (CPDP) mechanism for distributed cloud storage to support data migration and scalability of service, which considers the existence of multiple cloud service providers to collaboratively store and maintain the clients’ data. Cooperative PDP (CPDP) mechanism is based on homomorphic verifiable response, hash index hierarchy for dynamic scalability, cryptographic encryption for security. Moreover, it proves the security of scheme based on multi-prover zero knowledge proof system, which can satisfy knowledge soundness, completeness, and zero-knowledge properties. This research introduces lower computation and communication overheads in comparison with non-cooperative approaches.
IEEE 2014 TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT
Abstract—We address the problem of dynamic resource management for a large-scale cloud environment. Our contribution includes outlining distributed middleware architecture and presenting one of its key elements: a gossip protocol that (1) ensures fair resource allocation among sites/applications, (2) dynamically adapts the allocation to load changes and (3) scales both in the number of physical machines and sites/applications. We formalize the resource allocation problem as that of dynamically maximizing the cloud utility under CPU and memory constraints. We first present a protocol that computes an optimal solution without considering memory constraints and prove correctness and convergence properties. Then, we extend that protocol to provide an efficient heuristic solution for the complete problem, which includes minimizing the cost for adapting an allocation. The protocol continuously executes on dynamic, local input and does not require global synchronization, as other proposed gossip protocols do. We evaluate the heuristic protocol through simulation and find its performance to be well-aligned with our design goals.
Proceedings of the World Congress on Engineering 2012 Vol I WCE 2012, July 4 - 6, 2012, London, U.K.
Abstract— Cloud computing security challenges and it’s also an issue to many researchers; first priority was to focus on security which is the biggest concern of organizations that are considering a move to the cloud. The advantages of cloud computing include reduced costs, easy maintenance and re-provisioning of resources, and thereby increased profits. But the adoption and the passage to the Cloud Computing applies only if the security is ensured. How to guaranty a better data security and also how can we keep the client private information confidential? There are two major questions that present a challenge to Cloud Computing providers. When the data transferred to the Cloud we use standard encryption methods to secure the operations and the storage of the data. But to process data located on a remote server, the Cloud providers need to access the raw data. In this paper we are proposing an application of a method to execute operations on encrypted data without decrypting them which will provide us with the same results after calculations as if we have worked directly on the raw data.

IEEE 2012: HORNS: A Homomorphic Encryption Scheme for Cloud Computing using Residue Number System
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, MAY 2012
Abstract—In this paper, we propose a homomorphic encryption scheme using Residue Number System (RNS). In this scheme, a secret is split into multiple shares on which computations can be performed independently. Security is enhanced by not allowing the independent clouds to collude. Efficiency is achieved through the use of smaller shares.
IEEE 2012: Expert Discovery and Interactions in Mixed Service-Oriented Systems
IEEE 2012 TRANSACTIONS ON SERVICES COMPUTING
Abstract— Web-based collaborations and processes have become essential in today’s business environments. Such processes typically span interactions between people and services across globally distributed companies. Web services and SOA are the defacto technology to implement compositions of humans and services. The increasing complexity of compositions and the distribution of people and services require adaptive and context-aware interaction models. To support complex interaction scenarios, we introduce a mixed service-oriented system composed of both human-provided and software-based services interacting to perform joint activities or to solve emerging problems. However, competencies of people evolve over time, thereby requiring approaches for the automated management of actor skills, reputation, and trust. Discovering the right actor in mixed service-oriented systems is challenging due to scale and temporary nature of collaborations. We present a novel approach addressing the need for flexible involvement of experts and knowledge workers in distributed collaborations. We argue that the automated inference of trust between members is a key factor for successful collaborations. Instead of following a security perspective on trust, we focus on dynamic trust in collaborative networks. We discuss Human-Provided Services (HPS) and an approach for managing user preferences and network structures. HPS allows experts to offer their skills and capabilities as services that can be requested on demand. Our main contributions center around a context-sensitive trust-based algorithm called Expert HITS inspired by the concept of hubs and authorities in Web-based environments. Expert HITS takes trust-relations and link properties in social networks into account to estimate the reputation of users.

Privacy-Preserving Multi-Keyword Ranked Search over Encrypted Cloud Data
IEEE 2014 TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
Abstract—With the advent of cloud computing, data owners are motivated to outsource their complex data management systems from local sites to the commercial public cloud for great flexibility and economic savings. But for protecting data privacy, sensitive data have to be encrypted before outsourcing, which obsoletes traditional data utilization based on plaintext keyword search. Thus, enabling an encrypted cloud data search service is of paramount importance. Considering the large number of data users and documents in the cloud, it is necessary to allow multiple keywords in the search request and return documents in the order of their relevance to these keywords. Related works on searchable encryption focus on single keyword search or Boolean keyword search, and rarely sort the search results. In this paper, for the first time, we define and solve the challenging problem of privacy-preserving multi-keyword ranked search over encrypted data in cloud computing (MRSE). We establish a set of strict privacy requirements for such a secure cloud data utilization system. Among various multi-keyword semantics, we choose the efficient similarity measure of “coordinate matching,” i.e., as many matches as possible, to capture the relevance of data documents to the search query. We further use “inner product similarity” to quantitatively evaluate such similarity measure. We first propose a basic idea for the MRSE based on secure inner product computation, and then give two significantly improved MRSE schemes to achieve various stringent privacy requirements in two different threat models. To improve search experience of the data search service, we further extend these two schemes to support more search semantics. Thorough analysis investigating privacy and efficiency guarantees of proposed schemes is given. Experiments on the real-world data set further show proposed schemes indeed introduce low overhead on computation and communication

IEEE 2012: Ensuring Distributed Accountability for Data Sharing in the Cloud
IEEE 2012 TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING
Abstract— Cloud computing enables highly scalable services to be easily consumed over the Internet on an as-needed basis. A major feature of the cloud services is that users’ data are usually processed remotely in unknown machines that users do not own or operate. While enjoying the convenience brought by this new emerging technology, users’ fears of losing control of their own data (particularly, financial and health data) can become a significant barrier to the wide adoption of cloud services. To address this problem, in this paper, we propose a novel highly decentralized information accountability framework to keep track of the actual usage of the users’ data in the cloud. In particular, we propose an object-centered approach that enables enclosing our logging mechanism together with users’ data and policies. We leverage the JAR programmable capabilities to both create a dynamic and traveling object, and to ensure that any access to users’ data will trigger authentication and automated logging local to the JARs. To strengthen user’s control, we also provide distributed auditing mechanisms. We provide extensive experimental studies that demonstrate the efficiency and effectiveness of the proposed approaches.

IEEE 2012: Towards Secure and Dependable Storage Services in Cloud Computing
Abstract— Cloud storage enables users to remotely store their data and enjoy the on-demand high quality cloud applications without the burden of local hardware and software management. Though the benefits are clear, such a service is also relinquishing users’ physical possession of their outsourced data, which inevitably poses new security risks towards the correctness of the data in cloud. In order to address this new problem and further achieve a secure and dependable cloud storage service, we propose in this paper a flexible distributed storage integrity auditing mechanism, utilizing the homomorphic token and distributed erasure-coded data. The proposed design allows users to audit the cloud storage with very lightweight communication and computation cost. The auditing result not only ensures strong cloud storage correctness guarantee, but also simultaneously achieves fast data error localization, i.e., the identification of misbehaving server. Considering the cloud data are dynamic in nature, the proposed design further supports secure and efficient dynamic operations on outsourced data, including block modification, deletion, and append. Analysis shows the proposed scheme is highly efficient and resilient against Byzantine failure, malicious data modification attack, and even server colluding attacks

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING APRIL 2012
Abstract—Byzantine-fault-tolerant replication enhances the availability and reliability of Internet services that store critical state and preserve it despite attacks or software errors. However, existing Byzantine-fault-tolerant storage systems either assume a static set of replicas, or have limitations in how they handle reconfigurations (e.g., in terms of the scalability of the solutions or the consistency levels they provide). This can be problematic in long-lived, large-scale systems where system membership is likely to change during the system lifetime. In this paper, we present a complete solution for dynamically changing system membership in a large-scale Byzantine-fault-tolerant system. We present a service that tracks system membership and periodically notifies other system nodes of membership changes. The membership service runs mostly automatically, to avoid human configuration errors; is itself Byzantine fault-tolerant and reconfigurable; and provides applications with a sequence of consistent views of the system membership. We demonstrate the utility of this membership service by using it in a novel distributed hash table called dBQS that provides atomic semantics even across changes in replica sets. dBQS is interesting in its own right because its storage algorithms extend existing Byzantine quorum protocols to handle changes in the replica set, and because it differs from previous DHTs by providing Byzantine fault tolerance and offering strong semantics. We implemented the membership service and dBQS. Our results show that the approach works well, in practice: the membership service is able to manage a large system and the cost to change the system membership islow.
Attribute-Based Encryption with Verifiable Outsourced Decryption
IEEE 2013 TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
Abstract—Attribute-based encryption (ABE) is a public-key-based one-to-many encryption that allows users to encrypt and decrypt data based on user attributes. A promising application of ABE is flexible access control of encrypted data stored in the cloud, using access polices and ascribed attributes associated with private keys and cipher texts. One of the main efficiency drawbacks of the existing ABE schemes is that decryption involves expensive pairing operations and the number of such operations grows with the complexity of the access policy. Recently, Greenetal. Proposed an ABE system with outsourced decryption that largely elimi-nates the decryption overhead for users. In such a system, a user provides an un trusted server, say a cloud service provider, with a transformation key that allows the cloud to translate any ABE cipher text satisfied by that user’s attributes or access policy into a simple cipher text, and it only incurs a small computational over-head for the user to recover the plaintext from the transformed cipher text. Security of an ABE system with outsourced decryption ensures that an adversary (including a malicious cloud) will not be able to learn anything about the encrypted message; however, it does not guarantee the correctness of the transformation done by the cloud. In this paper, we consider a new requirement of ABE with outsourced decryption: verifiability. Informally, verifiability guarantees that a user can efficiently check if the transformation is done correctly. We give the formal model of ABE with verifiable outsourced decryption and propose a concrete scheme. We prove that our new scheme is both secure and verifiable, without relying on random oracles. Finally, we show an implementation of our
IEEE 2012: HASBE: A Hierarchical Attribute-Based Solution for Flexible and Scalable Access Control in Cloud Computing
IEEE 2012 TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
Abstract— Cloud computing has emerged as one of the most influential paradigms in the IT industry in recent years. Since this new computing technology requires users to entrust their valuable data to cloud providers, there have been increasing security and privacy concerns on outsourced data. Several schemes employing attribute-based encryption (ABE) have been proposed for access control of outsourced data in cloud computing; however, most of them suffer from inflexibility in implementing complex access control policies. In order to realize scalable, flexible, and fine-grained access control of outsourced data in cloud computing, in this paper, we propose hierarchical attribute-set-based encryption (HASBE) by extending cipher text-policy attribute-set-based encryption (ASBE) with a hierarchical structure of users. The proposed scheme not only achieves scalability due to its hierarchical structure, but also inherits flexibility and fine-grained access control in supporting compound attributes of ASBE. In addition, HASBE employs multiple value assignments for access expiration time to deal with user revocation more efficiently than existing schemes. We formally prove the security of HASBE based on security of the cipher text-policy attribute-based encryption (CP-ABE) scheme by Bettencourt et al. and analyze its performance and computational complexity. We implement our scheme and show that it is both efficient and flexible in dealing with access control for outsourced data in cloud computing with comprehensive experiments.
IEEE 2012 TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
Abstract— Cloud computing has emerged as one of the most influential paradigms in the IT industry in recent years. Since this new computing technology requires users to entrust their valuable data to cloud providers, there have been increasing security and privacy concerns on outsourced data. Several schemes employing attribute-based encryption (ABE) have been proposed for access control of outsourced data in cloud computing; however, most of them suffer from inflexibility in implementing complex access control policies. In order to realize scalable, flexible, and fine-grained access control of outsourced data in cloud computing, in this paper, we propose hierarchical attribute-set-based encryption (HASBE) by extending cipher text-policy attribute-set-based encryption (ASBE) with a hierarchical structure of users. The proposed scheme not only achieves scalability due to its hierarchical structure, but also inherits flexibility and fine-grained access control in supporting compound attributes of ASBE. In addition, HASBE employs multiple value assignments for access expiration time to deal with user revocation more efficiently than existing schemes. We formally prove the security of HASBE based on security of the cipher text-policy attribute-based encryption (CP-ABE) scheme by Bettencourt et al. and analyze its performance and computational complexity. We implement our scheme and show that it is both efficient and flexible in dealing with access control for outsourced data in cloud computing with comprehensive experiments.

IEEE 2012 The Future of Cloud-Based Entertainment
IEEE 2012 CLOUD COMPUTING
Abstract— This paper notes some signification trends related to the Internet and Be cloud computing [that will change the way entertainment is delivered and experienced. After extrapolating some general conclusions from these trends, two scenarios are described to illustrate predicted entertainment experiences.

IEEE 2012: Scalable and Secure Sharing of Personal Health Records in Cloud Computing using Attribute-based Encryption
IEEE 2012 TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
.jpg)
IEEE 2012: Access Control Mechanisms for Outsourced Data in Cloud
IEEE COMMUNICATION SYSTEMS AND NETWORKS (COMSNETS), 2012
Abstract— Cloud computing poses new security and access control challenges as the users outsource their sensitive data onto cloud storage. The outsourced data should be protected from unauthorized users access including the honest-but-curious cloud servers those hosts the data. In this paper, we propose two access control mechanisms based on (1) Polynomial interpolation technique and (2) Multi linear map. In these schemes, the authorized user need to store only a single key material irrespective of number of data items to which he has authorized access.

IEEE 2012: Efficient audit service outsourcing for data integrity in clouds
IEEE 2012 Transactions on Cloud Computing,

IEEE 2012: Cloud Computing Security: From Single to Multi-Clouds
IEEE 2012 - 45th Hawaii International Conference on System Sciences
Exploiting Dynamic Resource Allocation for Efficient Parallel Data Processing in the Cloud
IEEE 2014 TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
Abstract—In recent years ad hoc parallel data processing has emerged to be one of the killer applications for Infrastructure-as-a-Service (IaaS) clouds. Major Cloud computing companies have started to integrate frameworks for parallel data processing in their product portfolio, making it easy for customers to access these services and to deploy their programs. However, the processing frameworks which are currently used have been designed for static, homogeneous cluster setups and disregard the particular nature of a cloud. Consequently, the allocated compute resources may be inadequate for big parts of the submitted job and unnecessarily increase processing time and cost. In this paper, we discuss the opportunities and challenges for efficient parallel data processing in clouds and present our research project Nephele. Nephele is the first data processing framework to explicitly exploit the dynamic resource allocation offered by today's IaaS clouds for both, task scheduling and execution. Particular tasks of a processing job can be assigned to different types of virtual machines which are automatically instantiated and terminated during the job execution. Based on this new framework, we perform extended evaluations of Map Reduce-inspired processing jobs on an IaaS cloud system and compare the results to the popular data processing framework Hadoop.
No comments:
Post a Comment